LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2018

16/17PMT3MC01 – TOPOLOGY

Date: 25-10-2018 Dept. No. Time: 09:00-12:00	Max.: 100 Marks
Answer all the questions. Each question carries 20 marks.	
I a)1) Let X be a metric space. Then prove that any arbitrary union of open s	sets is open.
a)2) Let X be a metric space. Then prove that any finite intersection of open	n sets is open. (5)
b)1) If a convergent sequence in a metric space has infinitely many points the	nen prove that its limit is a limit
point of the set of points of the sequence.	
b)2) State and prove Cantor's intersection theorem.	(5+10)
OR	
c)1) Let X be a metric space. Then prove the following results:	
(i) any intersection of closed sets in X is closed.	
(ii) any finite union of closed sets in X is closed.	
c)2) State and prove Baire's theorem.	(6+9)
II a)1) Define metrizable space and relative topology	
OR	
a)2) Topology is also called as Rubber Sheet Geometry. Explain?	(5)
b)1) State and prove Lindelaef's theorem.	
b)2) State and prove Heine-Borel theorem.	(6+9)
OR	
c) Prove that a topological space is compact if every subbasic open cover ha	as a finite subcover. (15)
III a)1) Prove that every compact subspace of a Hausdorff space is closed. OR	
a)2) Prove that the product of any non-empty class of Hausdorff spaces is a	Hausdorff space. (5)
b)1) State Urysohn lemma.	
b)2) State and prove Tietze Extension theorem.	(3+12)
OR	
c)1) State and prove Urysohn Imbedding theorem.	(15)
IV a)1) Prove that any continuous image of a connected space is connected.	
OR	
a)2) Prove that the range of a continuous real function defined on a connected	ed space an interval.
	(5)
b)1) Prove that a subspace of a real line R is connected if and only if it is an	interval. In particular show that

R is connected.	
b)2) Prove that the product of any non-empty class of connected spaces is connec	ted.
b)3) Prove that the spaces R^n and C^n are connected.	(6+4+5)
OR	(01113)
c)1) Let X be a compact Hausdorff space. Then prove that X is totally disconnected	ed if and only if it has an
open base whose sets are also closed.	
c)2) Define Locally connected space and prove: Let X be a locally connected space	ee. If Y is an open
subspace of X, then each component of Y is open in X. In particular, each cor	mponent of X is open.
	(6+9)
V a)1) Prove that X_{∞} is compact	
OR	
a)2) Prove that X_{∞} is Hausdorff.	(5)
b) State and prove Weierstrass approximation theorem.	(15)
OR	
c) Quoting the required results, state and prove Real Stone Weierstrass theorem.	(15)

\	